Abstract
Regulatory modules for controlling the kinetics of toehold-mediated strand displacement (TMSD) play critical roles in designing dynamic and dissipative DNA chemical reaction networks (CRNs) but are hardwired into sequence designs. Herein, we introduce antitoehold (At), a plug-and-play module for reversible and continuous tuning of TMSD kinetics by temporarily occupying the toehold domain via a metastable duplex and base stacking. We demonstrate that kinetic control can be readily activated or deactivated in real time for any TMSD by simply adding At or anti-At. Continuous tuning of TMSD kinetics can also be achieved by altering the concentration of At. Moreover, the simple addition of At could readily reprogram existing TMSDs into a pulse-generation DNA CRN with continuous tunability. Our At approach also offers a new way for engineering continuously tunable DNA hybridization probes, which may find practical uses for discriminating clinically important mutations. Because of the simplicity, we anticipate that At will find wide applications for engineering DNA CRNs with diverse dynamic and dissipative behaviors, and DNA hybridization probes with tunable affinity and selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.