Abstract

Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single-frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post-processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call