Abstract

Protein design algorithms must search an enormous conformational space to identify favorable conformations. As a result, those that perform this search with guarantees of accuracy generally start with a conformational pruning step, such as dead-end elimination (DEE). However, the mathematical assumptions of DEE-based pruning algorithms have up to now severely restricted the biophysical model that can feasibly be used in protein design. To lift these restrictions, I propose to prune local unrealistic geometries (PLUG) using a linear programming-based method. PLUG's biophysical model consists only of well-known lower bounds on interatomic distances. PLUG is intended as preprocessing for energy-based protein design calculations, whose biophysical model need not support DEE pruning. Based on 96 test cases, PLUG is at least as effective at pruning as DEE for larger protein designs-the type that most require pruning. When combined with the LUTE protein design algorithm, PLUG greatly facilitates designs that account for continuous entropy, large multistate designs with continuous flexibility, and designs with extensive continuous backbone flexibility and advanced nonpairwise energy functions. Many of these designs are tractable only with PLUG, either for empirical reasons (LUTE's machine learning step achieves an accurate fit only after PLUG pruning), or for theoretical reasons (many energy functions are fundamentally incompatible with DEE).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.