Abstract

The point-of-care diagnosis of acute myocardial infarction (AMI), an extremely lethal disease with only a few hours of golden rescue time, is significant and urgently required. Here, we describe a plug-and-play carbon nanotube field effect transistor (CNT-FET) bio-chip supported with a smart portable readout for ultrasensitive and on-site testing of cardiac troponin I (cTnI), which is one of the most specific and valuable biomarkers of AMI. A modified clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system, featuring the G-triplex structured reporter, was first combined with the CNT-FET to realize non-nucleic acid detection. Such a unique CNT-FET biosensor achieved the high sensitivity (LOD: 0.33 fg/mL), which is expected to give timely warning in the early stage of myocardial injury. In addition, a bilayer gate dielectric consisting of Y2O3/HfO2, employed into the passivation process, enabled the high environmental stability and repeatability of CNT-FET. More importantly, the homemade compact chip readout forged a field-deployable cTnI analytical tool, realizing “plasma-to-answer” performance for AMI patients in point-of-care testing scenarios. The developed technology holds promise to help doctors make clinical decisions faster, especially in remote areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call