Abstract

Metafibers expand the functionalities of conventional optical fibers to unprecedented nanoscale light manipulations by integrating metasurfaces on the fiber tips, becoming an emerging light-coupling platform for both nanoscience and fiber optics communities. Mostly exploring the isolated bare fibers, current metafibers remain as proof-of-concept demonstrations due to a lack of standard interfaces with the universal fiber networks. Here, we develop new methodologies to fabricate well-defined plasmonic metasurfaces directly on the end facets of commercial single mode fiber jumpers using standard planar technologies and provide a first demonstration of their practical applications in the nonlinear optics regime. Featuring plug-play connections with fiber circuitry and arbitrary metasurfaces landscapes, the metafibers with tunable plasmonic resonances are implemented into fiber laser cavities, yielding all-fiber sub-picosecond (minimum 513 fs) soliton mode locked lasers at optical wavelengths of 1.5 micrometer and 2 micrometer, demonstrating their unusual polarimetric nonlinear transfer functions and superior saturation absorption responses. Novel insights into the physical mechanisms behind the saturable absorption of plasmonic metasurfaces are provided. The nanofabrication process flow is compatible with existing cleanroom technologies, offering metafibers an avenue to be a regular member of functionalized fiber components. The work paves the way towards next generation of ultrafast fiber lasers, optical frequency combs, optical neural networks and ultracompact "all-in-fibers" optical systems for sensing, imaging, communications, and many others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.