Abstract

Recently, a bacteria-powered biobattery containing multiple species demonstrated long-lasting and fully self-sustainable power generation through their synergistic interaction. Confining individual species in separate spaces avoids unbalanced competition between neighboring species, maximizing their cooperative interaction to extend battery life. Despite the vast potential and promise, however, a spatially engineered microbial consortium has never been sufficiently scaled in a systematic and controllable manner for immediate power applications. Moreover, the spatial organization of living microorganisms having their seamless and effective electrical coupling with the external electrode remains a significant challenge. In this work, we establish the groundwork for creating a microfabricable and scalable biobattery platform that allows control of a 3D multispecies microbial consortium. A layer-by-layer electropolymerization deposition of microbial-infused polymer solutions creates a vertically multi-layered, conductive, microbial structure where individual species are separately confined in quasi-solid-state polymer layers, ultimately providing effective coupling at the biotic-abiotic interface and efficient ionic environments for cross-feeding interactions between species. An integrated modular “plug-and-play” biobattery platform provides a simple and practical approach for its serial and parallel connections. By connecting multiple biobattery modules, an actual wireless telemetry system was successfully operated, ensuring the practical efficacy of this power supply for real-world wireless sensor network applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.