Abstract
Even if today's powerful machines make ploughing easier and faster than before, it is still a demanding task for the operator. To reduce the driver's workload, improve safety, and increase performance, it is reasonable to automate the process. In this paper, we present a novel method for ploughing furrow edge detection based on data from a Velodyne VLP-16 3D Light Detection and Ranging (LiDAR) sensor. From this detection it is possible to derive a guidance line for navigation. Our method is based on maximum gradient edge detection on each individual line of the 16-layer 3D LiDAR data, and RANSAC for fitting a line to the detected edge points. The method is also capable of determining on which side of the furrow is the ploughed and the unploughed land. The evaluation of the method was conducted on a data set that was recorded during in-furrow ploughing, on the part of the data where the furrow edge is always visible on all lines of the LiDAR scan. Based on an initial evaluation the method can detect the ploughing furrow in 3D LiDAR point cloud data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.