Abstract
<abstract> <p>Plot text is very valuable supporting information in movie recommendations. It has several characteristics: 1) It is rich in content. Each movie often has a document of more than 200 words to describe it, which can give the movie a rich semantic meaning. 2) Objectivity. Plot texts are different from review information. A movie may have thousands of reviews with mixed and conflicting opinions. However, a film has only one plot text, which is fair in tone and does not take a position. Despite its appealing properties and potential for accurate movie portrayal, the lack of a building block for effectively mining plot semantics has led to the marginalization of plot text in the design of movie recommendation algorithms. Therefore, in this paper, we explore the application of the Transformer, currently the best natural language processing module, to learning movie plot texts to help achieve more accurate rating prediction. We propose the "Plot-Aware Transformer" model (PAT) to model the process of "user-movie" rating interaction. We test the PAT model on several movie datasets and demonstrated that the model is competitive. In all tasks, PAT achieves state-of-the-art performance compared to baseline experiments.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.