Abstract
The nucleocytoplasmic (N/C) ratio plays a prominent role in the maternal-to-zygotic transition (MZT) in many animals. The effect of the N/C ratio on cell-cycle lengthening and zygotic genome activation (ZGA) has been studied extensively in Drosophila, where haploid embryos experience an additional division prior to completing cellularization and triploid embryos cellularize precociously by one division. In this study, we set out to understand how the obligate difference in ploidy in the haplodiploid wasp, Nasonia, affects the MZT and which aspects of the Drosophila MZT are conserved. While subtle differences in early embryonic development were observed in comparisons among haploid, diploid, and triploid embryos, in all cases embryos cellularize at cell cycle 12. When ZGA was inhibited, both diploid female, and haploid male, embryos went through 12 syncytial divisions and failed to cellularize before dying without further divisions. We also found that key players of the Drosophila MZT are conserved in Nasonia but have novel expression patterns. Our results suggest that zygotically expressed genes have a reduced role in determining the timing of cellularization in Nasonia relative to Drosophila, and that a stronger reliance on a maternal timer is more compatible with species where variations in embryonic ploidy are obligatory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.