Abstract

Photosynthetically-active protoplasts isolated from isogenic sets of diploid-tetraploid and tetraploid-octoploid alfalfa (Medicago sativa L.) leaves were used to investigate the consequences of polyploidization on several aspects related to photosynthesis at the cellular level. Protoplasts from the tetraploid population contained twice the amount of DNA, ribulose-1,5-bisphosphate carboxylase (RuBPCase), chlorophyll (Chl), and chloroplasts per cell compared to protoplasts from the diploid population. Although protoplasts from the octoploid population contained nearly twice the number of chloroplasts and amount of Chl per cell as tetraploid protoplasts, the amount of DNA and RuBPCase per octoploid cell was only 50% higher than in protoplasts from the tetraploid population. The rate of CO(2)-dependent O(2) evolution in protoplasts nearly doubled with an increase in ploidy from the diploid to tetraploid level, but increased only 67% with an increase in ploidy from the tetraploid to octoploid level. Whereas leaves and protoplasts had similar increases in RuBPCase, DNA, and Chl with increase in ploidy level, it was concluded that increased cell volume rather than increased cell number per leaf is responsible for the increase in leaf size with ploidy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call