Abstract

The possible influence of gold(III) chloride and the two gold(I)-containing anti-arthritic drugs, auranofin and sodium aurothiomalate, on cellular ploidity and cell cycle progression was investigated on cultured human epithelial cells. Four different cell lines were used: the parent line (HE) and three sub-strains which previously had acquired resistance to the antiproliferative effects of either 350 mumol gold chloride/l culture medium (HEAu350), 2 mumol auranofin/l (HEAF) or 300 mumol sodium aurothiomalate/l (HEMyo). DNA-histograms were obtained by flow cytometry examinations during a 9-days' exposure to either of these gold-containing compounds and concentrations. The HE, HEAF and HEMyo cells had similar ploidities, close to tetraploid. The HEAu350 cells had altered ploidity to distinct tetraploid. The distribution of the resistant cells with the cell cycle phases was not different from that of untreated HE cells. The HE cells, when treated with auranofin or sodium aurothiomalate, accumulated in the G2-phase of the cell cycle. In addition, a new cedecoploid peak appeared. No such changes were observed on gold chloride exposure or in HE controls grown without drug supplement. The effects of auranofin and sodium aurothiomalate on cell cycle progression of the HE cells possibly indicate a tendency to polyploidity, and furthermore that inhibition of cellular mitosis is one mechanism of the antiproliferative effect common to the two drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.