Abstract

Abstract Background and aim Atrial fibrillation (AF) is frequently accompanied by cardiac fibrosis and diastolic heart failure. Due to the heterogeneous nature and complexity of fibrosis, the knowledge of the underlying pathomechanisms is limited. Thus, effective antifibrotic pharmacotherapy is missing. The objective of this study was to decipher the role of polo-like kinase 2 (PLK2) in the pathogenesis of cardiac fibrosis and left ventricular diastolic dysfunction. We put particular emphasis on the identification of profibrotic downstream targets of PLK2, which can serve as therapeutic targets. Methods and results This study was based on human atrial tissue biopsies and peripheral blood samples, a PLK2 knockout mouse model, a canine tachy-pacing model and specific pharmacological interventions on cardiac fibroblasts. In human atrial AF tissue samples, PLK2 was 50% downregulated by hypoxia-induced promoter methylation compared to sinus rhythm (SR) control. Confirmatory analysis of a canine tachy-pacing model showed PLK2 downregulation exclusively in the atria but not in the ventricles. Specific pharmacological inhibition as well as genetic deletion of PLK2 led to a striking myofibroblast phenotype. Discovery proteomics revealed that the global knockout of PLK2 resulted in de novo secretion of the inflammatory cytokine osteopontin (OPN) in cardiac fibroblasts and concomitant ventricular fibrosis in the PLK2 knockout mouse model. An ELISA analysis of peripheral blood samples of AF patients with electrophysiologically proven fibrosis, confirmed significantly increased OPN plasma concentrations compared to SR and non-fibrosis AF controls. Consequently, echocardiography on PLK2 KO mice revealed left ventricular diastolic dysfunction, tachycardia and fibrosis-typical surface ECG anomalies (PQ and QRS prolongation). Mechanistically, we identified the ERK1/2 signaling pathway as the molecular link between reduced expression of PLK2 and elevated osteopontin transcription. In a reverse translational attempt, we successfully tested the capability of 5-amino-salicylic acid (5-ASA) to inhibit osteopontin transcription and to reverse a TGF-β-induced myofibroblast phenotype in vitro. Currently the long-term administration of 5-ASA is tested in PLK2 knockout mice to evaluate the therapeutic potential to prevent cardiac fibrosis and diastolic heart failure development. Conclusion and clinical impact We identified PLK2 as an epigenetically regulated kinase involved in the pathophysiology of fibrosis in AF. PLK2 knockout mice can serve as a model of diastolic heart failure wherein OPN is a promising therapeutic target. Our results strengthen the current hypothesis that atrial fibrillation is not only an ion channel disease but a complex systemic disorder. Restoration of physiological PLK2 expression and blockade of osteopontin release with 5-ASA may constitute valuable new drug targets for the prevention and treatment of fibrosis and diastolic heart failure in AF. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): Faculty of Medicine, Carl Gustav Carus, Dresden, “MeDDrive Start” Grant

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call