Abstract

Abstract The new apatite-group mineral pliniusite, ideally Ca5(VO4)3F, was found in fumarole deposits at the Tolbachik volcano, Kamchatka, Russia, and in a pyrometamorphic rock of the Hatrurim Complex, Israel. Pliniusite, together with fluorapatite and svabite, forms a novel and almost continuous ternary solid-solution system characterized by wide variations of T5+ = P, As, and V. In paleo-fumarolic deposits at Mountain 1004 (Tolbachik), members of this system, including the holotype pliniusite, are associated with hematite, tenorite, diopside, andradite, kainotropite, baryte and supergene volborthite, brochantite, gypsum and opal. In sublimates of the active Arsenatnaya fumarole (Tolbachik), pliniusite–svabite–fluorapatite minerals coexist with anhydrite, diopside, hematite, berzeliite, schäferite, calciojohillerite, forsterite, enstatite, magnesioferrite, ludwigite, rhabdoborite-group fluoroborates, powellite, baryte, udinaite, arsenudinaite, paraberzeliite, and spinel. At Nahal Morag, Negev Desert, Israel, the pliniusite cotype and V-bearing fluorapatite occur in schorlomite-gehlenite paralava with rankinite, walstromite, zadovite-aradite series minerals, magnesioferrite, hematite, khesinite, barioferrite, perovskite, gurimite, baryte, tenorite, delafos-site, wollastonite, and cuspidine. Pliniusite forms hexagonal prismatic crystals up to 0.3 × 0.1 mm and open-work aggregates up to 2 mm across (Mountain 1004) or grains up to 0.02 mm (Nahal Morag and Arsenatnaya fumarole). Pliniusite is transparent to semitransparent, colorless or whitish, with a vitreous luster. The calculated density is 3.402 g/cm−3. Pliniusite is optically uniaxial (–), ω = 1.763(5), ε = 1.738(5). The empirical formulas of pliniusite type specimens calculated based on 13 anions (O+F+Cl) per formula unit are (Ca4.87Na0.06Sr0.03Fe0.02)Σ4.98(V1.69As0.66P0.45S0.12Si0.09)Σ3.01O11.97F1.03 (Mountain 1004) and (Ca4.81Sr0.12Ba0.08Na0.05)Σ5.06(V2.64P0.27S0.07Si0.03)Σ3.01O12.15F0.51Cl0.34 (Nahal Morag). Pliniusite has a hexagonal structure with space group P63/m, a = b = 9.5777(7), c = 6.9659(5) Å, V = 553.39(7) Å3, and Z = 2. The structure was solved using single-crystal (holotype) X-ray diffraction, R = 0.0254. The mineral was named in honor of the famous Roman naturalist Pliny the Elder, born Gaius Plinius Secundus (AD 23–79). It is suggested that the combination of high temperature, low pressure, and high oxygen fugacity favors the incorporation of V5+ into calcium apatite-type compounds, leading to the formation of fluorovanadates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.