Abstract

Pulsed corona discharge is an efficient method on NO oxidization, and the investigation of the oxidization process is significant both for model validation and industrial application. In-situ visualization of NO and OH in pulsed corona discharge was performed by planar laser-induced fluorescence (PLIF) in this work. Two dimensional NO oxidization and OH consumption were studied under different conditions. Some significant results were obtained for mixing behaviors of NO oxidization process. The NO oxidization rate and OH consumption increased by 22% and 40%, respectively, as the Re number of additional gas flow increased from 1379 to 4138. The OH utilization ratio was defined to describe the effect of OH radicals on NO oxidization process. It is demonstrated that OH plays an important role on NO oxidization. The NO reaction and OH consumption zone has a good consistent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call