Abstract

Jaburetox is a polypeptide derived from jack bean (Canavalia ensiformis) urease and toxic to a broad spectrum of insects, phytopathogenic filamentous fungi and yeasts of medical importance. The elucidation of the structural basis for the mode of action of Jaburetox is the focus of this multifaceted study. Jaburetox in solution is a monomer of 11.0 kDa featuring a large hydrodynamic radius, suggestive of a disordered polypeptide. The intrinsically disordered nature of Jaburetox was theoretically predicted by a comprehensive bioinformatics analysis and experimentally confirmed by light scattering as well as by circular dichroism and NMR spectroscopy. NMR signal assignment provided backbone secondary chemical shifts that indicated that Jaburetox has a low propensity to assume a stable secondary structure. (15)N relaxation studies revealed significant backbone mobility, especially in the N-terminal portion of the polypeptide. The solution structure of Jaburetox shows the presence of an α-helical motif close to the N terminus, together with two turn-like structures situated in the central portion of the protein and close to the C terminus. Similar regions were predicted as potential protein-protein interaction sites using computational tools. The knowledge of the structural properties of Jaburetox in solution is a key step to correlate its structural and biological activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.