Abstract

Chiral plexcitonic systems exhibit a novel chiroptical phenomenon, which can provide a new route to design chiroptical devices. Reported works focused on the two-mode strong coupling between chiral molecules and nanoparticles, while multiple-mode coupling can provide richer modulation. In this paper, we proposed a three-mode coupling system consisting of a chiral Au helices array, a Fabry-Pérot cavity, and monolayer WSe2, which can provide an extra chiral channel, a more widely tunable region, and more tunable methods compared to two-mode coupled systems. The optical response of this hybrid system was investigated based on the finite element method. Mode splitting observed in the circular dichroism (CD) spectrum demonstrated that the chiroptical response successfully shifted from the resonant position of the chiral structure to three plexcitons through strong coupling, which provided a new route for chiral transfer. Furthermore, we used the coupled oscillator model to obtain the energy and Hopfield coefficients of the plexciton branches to explain the chiroptical phenomenon of the hybrid system. Moreover, the tunability of the hybrid system can be achieved by tuning the temperature and period of the helices array. Our work provides a feasible strategy for chiral sensing and modulation devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call