Abstract

Cost and durability are still challenging for commercialization enabling automotive fuel cell technology. Mass transport, oxygen reduction reaction (ORR) activity and fuel cell stack materials such as bipolar plates are high cost impact areas. Significant research and development (R&D) efforts have been pursued in each area individually. To fill the gap to the target, further R&D is necessary to develop a concept which is attributed to those factors concurrently. For example, catalyst research aims not only to improve ORR mass activity but also to enhance mass transport performance in the high current density region. Therefore further R&D focus for catalyst area will be shifted from the catalyst material itself to the catalyst layer structure to enhance the ORR activity and overcome mass transport in the membrane electrode assembly. The technical outlook and research approaches for the remaining technical challenges for automotive PEMFCs will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.