Abstract

Type 2 diabetes is a polygenic disease and characterized by hyperglycemia and insulin resistance, and it is strongly associated with obesity. However, the mechanism by which obesity contributes to onset of type 2 diabetes is not well understood. We generated rat strains with a hyperglycemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr–/–) locus derived from the Zucker Fatty rat. Phenotypes for plasma glucose, and insulin levels were measured, and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blot analyses, respectively. Compared with the obese control strain F344-fa (Lepr–/–), plasma glucose levels of the obese F344-fa-nidd6 (Lepr–/– and Nidd6/of) significantly increased, and plasma insulin levels significantly decreased. These phenotypes were not observed in the lean strains, suggesting that the Nidd6/of locus harbors a diabetogenic gene associated with obesity. We measured the expression of 41 genes in the Nidd6/of QTL region of each strain and found that the mRNA expression levels of the two genes significantly differed between the obese strains. The two genes, pleckstrin homology domain-containing, family S member 1 (Plechs1) and peroxiredoxin III (Prdx3), were differentially expressed only in the obese rats, suggesting that these two genes are involved in the mild elevation of blood glucose levels and insulin resistance in obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.