Abstract

Just as glaciers worldwide left a record of past advances and retreats that shifted latitudinally in response to oscillating Quaternary climate changes, so too have cold-climate conditions and permafrost left topographic and sedimentary signatures in former periglacial environments. This review documents widespread occurrence of past permafrost and intense frost action that led to rock fracturing, regolith production, and regolith-mantled slopes in the mid-Atlantic region of the United States during late Pleistocene cold-climate conditions. Strong signatures of thermal contraction cracking and brecciation from frost cracking exist where rocks and sediments are most frost susceptible, as with fissile shales. On sandstone hillslopes, frost weathering produced boulder-rich sediment that episodically flowed slowly down-slope during permafrost thaw, resulting in solifluction lobes and terraces in which colluvium moved cumulatively at least a kilometer. Radiocarbon dating, optically stimulated luminescence age control, and cosmogenic isotope studies constrain some periglacial features to the Last Glacial Maximum but also indicate longer residence times of regolith. ▪ Former permafrost and areas of intensive frost cracking extended over much of the mid-Atlantic region of the eastern United States during late Pleistocene cold glacial periods. ▪ Cold-climate conditions and permafrost left long-lasting topographic and sedimentary records with limited post-depositional erosion in the formerly periglacial mid-Atlantic region. ▪ Prominent relict periglacial landforms include polygon networks and frost wedges that are the result of thermal contraction cracking and brecciated rock formed by segregated ice and frost cracking. ▪ Widespread solifluction landforms are a topographic signature of freezing, thawing, and mass movement of mobile regolith produced by frost cracking, and some were active during the Last Glacial Maximum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.