Abstract

Traits that do not contribute to fitness are expected to be lost during the course of evolution, either as a result of selection or drift. The Leloir pathway of galactose metabolism (GAL) is an extensively studied metabolic pathway that degenerated on at least three independent occasions during the evolutionary diversification of yeasts, suggesting that the pathway is costly to maintain in environments that lack galactose. Here I test this hypothesis by competing GAL pathway deletion mutants of Saccharomyces cerevisiae against an isogenic strain with an intact GAL pathway under conditions where expression of the pathway is normally induced, repressed, or uninduced. These experiments do not support the hypothesis that pleiotropy drives GAL pathway degeneration, because mutations that knock out individual GAL genes do not tend to increase fitness in the absence of galactose. At a molecular level, this result can be explained by the fact that yeast uses inexpensive regulatory proteins to tightly regulate the expression of structural genes that are costly to express. I argue that these results have general relevance for our understanding of the fitness consequences of gene disruption in yeast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call