Abstract

Cyclic GMP (cGMP) mediates vascular smooth muscle relaxation in response to nitric oxide and atrial natriuretic peptides. One mechanism by which cGMP decreases vascular tone is by lowering cytosolic Ca2+ levels in smooth muscle cells. Although mechanisms by which cGMP regulates cytosolic Ca2+ are unclear, an important role for the cGMP-dependent dependent protein kinase in regulating Ca2+ has been proposed. Cyclic GMP-dependent protein kinase has been shown to regulate several pathways that control cytosolic Ca2+ levels: inositol 1,4,5-trisphosphate production and action, Ca(2+)-ATPase ATPase activation, and activation of Ca(2+)-activated K+ channels. The pleiotropic action of cGMP-dependent protein kinase is proposed to occur through the phosphorylation of important proteins that control several signaling pathways in smooth muscle cells. One potential target for cGMP-dependent protein kinase is the class of okadaic acid-sensitive protein phosphatases that appears to regulate K+ channels among other potentially important events to reduce cytosolic Ca2+ and tone. In addition, cytoskeletal proteins are targets for cGMP-dependent protein phosphorylation, and it is now appreciated that the cytoskeleton may play a key role in signal transduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.