Abstract
A large proportion of plant carbon flow passes through the shikimate pathway to phenylalanine, which serves as a precursor for numerous secondary metabolites. To identify new regulatory mechanisms affecting phenylalanine metabolism, we isolated Arabidopsis thaliana mutants that are resistant to the phytotoxic amino acid m-tyrosine, a structural analog of phenylalanine. Map-based cloning identified adt2-1D, a dominant point mutation causing a predicted serine to alanine change in the regulatory domain of ADT2 (arogenate dehydratase 2). Relaxed feedback inhibition and increased expression of the mutant enzyme caused up to 160-fold higher accumulation of free phenylalanine in rosette leaves, as well as altered accumulation of several other primary and secondary metabolites. In particular, abundance of 2-phenylethylglucosinolate, which is normally almost undetectable in leaves of the A. thaliana Columbia-0 accession, is increased more than 30-fold. Other observed phenotypes of the adt2-1D mutant include abnormal leaf development, resistance to 5-methyltryptophan, reduced growth of the generalist lepidopteran herbivore Trichoplusia ni (cabbage looper) and increased salt tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.