Abstract

Expression of HIV-1 Vpr causes cell cycle G2 arrest, changes in cell shape, and cell death over a large evolutionary distance ranging from human to yeast cells. As a step toward understanding these highly conserved Vpr functions, we have examined the effect of Vpr on cytoskeletal elements and the viability of fission yeast. We demonstrate that the changes in cell morphology induced by Vpr in fission yeast are caused by several underlying cellular abnormalities, including increased biosynthesis of chitin in the cell wall, disruption of the actin cytoskeleton, and altered polarity for cell growth. The extent of these cellular alterations and cell survival correlates with the level ofvprexpression. Accompanying cell death, Vpr induces aberrant nuclear morphologies in fission yeast which are similar to those found during the apoptosis induced by Vpr in mammalian cells. The Vpr-induced cytopathic effects and cell death can be suppressed by treatment with pentoxifylline, a compound that inhibits HIV-1 viral replication and suppresses Vpr-induced cell cycle G2 arrest in human and fission yeast cells. The results presented here suggest that pentoxifylline suppresses the effects of Vpr by blocking interactions of Vpr with cellular proteins. Given that pentoxifylline has potential therapeutic value in blocking the effects of Vpr in HIV-infected patients, understanding the molecular mechanisms by which pentoxifylline antagonizes Vpr may have general implications for HIV therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.