Abstract
While many studies have investigated synergic interactions between surfactants in mixed systems, understanding possible competitive behaviors between interfacial components of binary surfactant systems is necessary for the optimized efficacy of applications dependent on surface properties. Such is the focus of these studies in which the surface behavior of a binary surfactant mixture containing nonionic (Span-80) and anionic (AOT) components adsorbing to the oil/water interface was investigated with vibrational sum-frequency (VSF) spectroscopy and surface tensiometry experimental methods. Time-dependent spectroscopic studies reveal that while both nonionic and anionic surfactants initially adsorb to the interface, anionic surfactants desorb over time as the nonionic surfactant continues to adsorb. Concentration studies that vary the ratio of Span-80 to AOT in bulk solution show that the nonionic surfactant preferentially adsorbs to the oil/water interface over the anionic surfactant. These studies have important implications for applications in which mixed surfactant systems are used to alter interfacial properties, such as pharmaceuticals, industrial films, and environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.