Abstract

BackgroundVertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation.ResultsThe platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively.ConclusionWe propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages.

Highlights

  • Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity

  • Currently the assembly is incomplete for the α- and β-globin clusters, as individual globin genes appear on different contigs

  • Genome context of vertebrate α- and β-globin clusters We found that the platypus α-globin cluster is flanked by MPG, C16orf35, globin super-family (GBY) and LUC7L, and that the same genes flank the α-globin cluster in mammals and birds [58,59]

Read more

Summary

Introduction

Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. The evolution of the vertebrate globin superfamily has been extensively studied for many decades by comparing the structure and function of members of the gene families. These are principally haemoglobin, myoglobin, cytoglobin and neuroglobin and, more recently, globin X (in fish and amphibians [1]) and globin Y (specific to amphibians [2]). The evolutionary history of α- and β-globin genes can be traced back to the common ancestors of fish, amphibians and amniotes (reptiles, birds and mammals), by comparing gene structure and composition of α- and β-globin clusters across vertebrates. In the Antarctic notothenioid fish (Notothenia coriiceps, N. angustata, Trematomus hansoni, T. pennellii), there is a single 5'-α-β-3' locus [7], in pufferfish (Fugu rubripes) there are two globin clusters (one with α-globin genes and the other with both α- and β-globin genes), which are located on different chromosomes [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call