Abstract

Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.