Abstract

PLATO (PLAnetary Transits and Oscillation of stars) is the ESA Medium size dedicated to exo-planets discovery, adopted in the framework of the Cosmic Vision program. The PLATO launch is planned in 2026 and the mission will last at least 4 years in the Lagrangian point L2. The primary scientific goal of PLATO is to discover and characterize a large amount of exo-planets hosted by bright nearby stars, constraining with unprecedented precision their radii by mean of transits technique and the age of the stars through by asteroseismology. By coupling the radius information with the mass knowledge, provided by a dedicated ground-based spectroscopy radial velocity measurements campaign, it would be possible to determine the planet density. Ultimately, PLATO will deliver the largest samples ever of well characterized exo-planets, discriminating among their ‘zoology’. The large amount of required b right stars can be achieved by a relatively small aperture telescope (about 1 meter class) with a wide Field of View (about 1000 square degrees). The PLATO strategy is to split the collecting area into 24 identical 120 mm aperture diameter fully refractive cameras with partially overlapped Field of View delivering an overall instantaneous sky covered area of about 2232square degrees. The opto-mechanical sub-system of each camera, namely Telescope Optical Unit, is basically composed by a 6 lenses fully refractive optical system, presenting one aspheric surface on the front lens, and by a mechanical structure made in AlBeMet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call