Abstract

Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.