Abstract

We report the formation, structures, temperature-dependent phase transitions, and high-temperature reactivity of the potential proton and oxide ion conductors BaCe(1-x)M(x)O3 (M(3+) = In(3+), La(3+)). The present in situ diffraction studies show oxidative platinum uptake at temperatures as low as 950 °C into BaCeO3, forming the cubic Ba2CePtO6 double perovskite. The transient B-site double perovskite expels platinum at around 1200-1250 °C. Platinum oxidation via BaCeO3 is investigated by in situ powder X-ray and neutron diffraction experiments in various atmospheres. Doped BaCe(1-x)M(x)O3 phases show the formation of Ba2CePtO6 without incorporating the M(3+) dopant. Oxidative platinum uptake is also observed during the synthesis of BaCeO3 on platinum metal. We report the reaction pathway for the low-temperature oxidative formation of Ba2CePtO6 and the subsequent liberation of platinum for the barium cerate system. The findings are supported by ambient-temperature X-ray diffraction, in situ powder X-ray, and powder neutron diffraction as well as XPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.