Abstract

Oxygen vacancy-rich titania is a promising support for enhancing the hydrogen evolution reaction (HER). This work innovatively loaded Pt nanoparticles on oxygen vacancy-rich TiO2 (Pt/Vo-TiO2) in situ by using a photocatalytic device. The synthesis conditions are mild, do not require high temperatures and strong reducing agents, and can avoid the accumulation of platinum species. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectrometry (XAS) verified the synergistic effect of Pt species and oxygen vacancies on the progress of the reaction kinetics, where the Pt particles exposed by the in situ synthesis functioned as reaction sites in the electrocatalytic hydrogen evolution. Based on this, Pt/Vo-TiO2 exhibits excellent electrocatalytic performance with an overpotential of only 56 mV at a current density of 10 mA cm-2 and a Tafel slope of only 73.5 mV dec-1. This work provides a new strategy for designing highly efficient HER catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.