Abstract

The solubility and partitioning of Pt in a S-free vapor – brine – rhyolite melt – Pt metal assemblage has been quantified at 800 °C, f O 2 = NNO and pressures of 100 and 140 MPa. Vapor and brine were sampled at run conditions by trapping these phases as glass-hosted fluid inclusions as the melt cooled through the glass transition temperature. The vapor and brine were in equilibrium with the melt at the time of trapping and, thus, represent fluids which were sampled at the termination of each experimental run. The microthermometrically determined salinities of vapor and brine are ∼2 and ∼63 wt.% NaCl eq. and ∼9 and ∼43 wt.% NaCl eq. at 100 and 140 MPa, respectively. Platinum solubilities in vapor, brine and glass (i.e., quenched melt) were quantified by using laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS). Equilibrium is discussed with reference to the major and trace element concentrations of glass-hosted fluid inclusions as well as the silicate melt over run times that varied from 110 to 377 h at 140 MPa and 159 to 564 h at 100 MPa. Platinum solubility values (±1σ) in H 2O-saturated felsic melt are 0.28 ± 0.13 μg/g and 0.38 ± 0.06 μg/g at 140 and 100 MPa, respectively. Platinum solubility values ( ± 1 σ x ¯ ) at 140 and 100 MPa, respectively, in aqueous vapor are 0.91 ± 0.29 μg/g and 0.37 ± 0.17 μg/g and in are brine 16 ± 10 μg/g and 3.3 ± 1.0 μg/g. The measured solubility data were used to calculate Nernst-type partition coefficients for Pt between vapor/melt, brine/melt and vapor/brine. The partition coefficient values ( ± 1 σ x ¯ ) for vapor/melt, brine/melt and vapor/brine at 140 MPa are 2.9 ± 1.0, 67 ± 27, and 0.13 ± 0.05 and at 100 MPa are 1.0 ± 0.2, 6.8 ± 2.4, and 0.15 ± 0.05. The partitioning data were used to model the Pt-scavenging capacity of vapor and brine during the crystallization-driven degassing (i.e., second boiling) of a felsic silicate melt over a depth range (i.e., 3–6 km) consistent with the evolution of magmatic-hydrothermal ore deposits. Model calculations suggest that aqueous vapor and brine can scavenge sufficient quantities of Pt, and by analogy other platinum group elements (PGE), to produce economically important PGE-rich magmatic-hydrothermal ore deposits in Earth’s upper continental crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call