Abstract

Platinum-based single-atom catalysts (SACs) are among the most promising candidates for the practical applications of electrochemical hydrogen evolution reaction (HER), but their catalytic efficiency remains to be further enhanced. Herein, a well-designed nanoarray-structured nitrogen-doped graphite foil (NNGF) substrate is introduced to support Pt SACs in Pt-N4 construction (Pt1/NNGF) for HER. Within NNGF, the constructed nanoarray-structured surficial layer for supporting Pt SACs could enhance the exposure of active sites to the electrolyte and improve the reaction and diffusion kinetics; meanwhile, the retained graphite structures in bulk NNGF provide not only the required electrical conductivity but also the mechanical stability and flexibility. Because of such double-layer structures of NNGF, stable Pt-N4 construction, and binder-free advantages, the Pt1/NNGF electrode exhibits a low overpotential of 0.023 V at 10 mA cm-2 and a small Tafel slope of 29.1 mV dec-1 as well as an excellent long-term durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.