Abstract

A large research emphasis is still placed on improvement of production routes of nanosized materials with enhanced catalytic properties. Here we developed a continuous process for generation of platinum (Pt) nanoparticles supported on reduced graphene oxide (rGO) in situ via pulsed laser ablation in liquid (PLAL) dispersion of rGO. This in situ PLAL technique is a single step procedure that allows the synthesis of heterogeneous catalysts with a simultaneous control of particle size and mass loading. By this method, Pt particles with mean particle diameters around 2.5 nm and in a regime of 3–4 nm have been produced in ethanol and saline water, respectively, and adsorbed on rGO with up to 50 wt%. Both inorganic and organic solvents used during in situ synthesis lead to production of CO tolerant Pt/rGO catalysts, which are relevant for fuel cell applications due to the remarkably low CO desorption temperatures around 65–80 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.