Abstract

The over-accumulation of ROS during prolonged in vitro expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during in vitro expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.