Abstract
This paper reports a nontoxic, rapid, one-pot and template-free synthesis of three-dimensional (3D) Pt nanoflowers (PtNFs) with high yield and good size monodispersity supported on graphene oxide (GO) nanosheets. The key synthesis strategy employed a low-cost, green solvent, ethanol as the reductant and an advanced, powerful 2D carbon material, GO nanosheets as the stabilizing material. The resulting PtNFs-GO nanosheets were characterized by transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. It was found that the monodispersed, porous PtNFs supported on GO nanosheets were a uniform size of 30 nm and each was composed of numerous “clean” and small (4 nm) Pt nanoparticles, which revealed an unusually high activity for methanol oxidation reaction compared to commercial Pt black. Furthermore, based on a systematic study of the PtNFs growth conditions, a possible mechanism, and especially the importance of GO in the formation was proposed. Our study demonstrates that GO is a promising support material for developing next-generation advanced Pt based fuel cells and their relevant electrodes in the field of energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.