Abstract
Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical CO2 (sc-CO2)-assisted electroless plating. The catalyst precursor used in the sc-CO2 catalyzation step is an organometallic compound, palladium (II) acetylacetonate (Pd(acac)2). The electrical resistance is evaluated, and a tape adhesion test is utilized to demonstrate intactness of the Pt layer on the PET film. The electrical resistance of the Pt/PET with 60 min of the Pt deposition time remains at a low level of 1.09 Ω after the adhesion test, revealing positive effects of the sc-CO2 catalyzation step. A tensile test is conducted to evaluate the mechanical strength of the Pt/PET. In-situ electrical resistances of the specimen are monitored during the tensile test. The fracture strength is determined from the stress value when the short circuit occurred. The fracture strength is 33.9 MPa for a specimen with 30 min of the Pt deposition time. As the Pt deposition time increases to 45 min and 60 min, the fracture strengths reach 52.3 MPa and 65.9 MPa, respectively. The promoted fracture strength and the decent electrical conductivity demonstrate the advantages toward biomedical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.