Abstract
Platinum functions exceptionally well as a nanoparticulate catalyst in many important fields, such as in the removal of atmospheric pollutants, but it is scarce, expensive and not always sufficiently durable. Here, we report a perovskite system in which 0.5 wt% Pt is integrated into the support and its subsequent conversion through exsolution to achieve a resilient catalyst. Owing to the instability of most Pt oxides at high temperatures, a thermally stable platinum oxide precursor, barium platinate, was used to preserve the platinum as an oxide during the solid-state synthesis in an approach akin to the Trojan horse legend. By tailoring the procedure, it is possible to produce a uniform equilibrated structure with active emergent Pt nanoparticles strongly embedded in the perovskite surface that display better CO oxidation activity and stability than those of conventionally prepared Pt catalysts. This catalyst was further evaluated for a variety of reactions under realistic test environments-CO and NO oxidation, diesel oxidation catalysis and ammonia slip reactions were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.