Abstract
In this paper, we performed thorough experimental and theoretical calculations to examine the interaction between Pt derivative, as an anticancer, and ct-DNA. The mode of DNA binding with [Pt(NH3)2(Isopentylgly)]NO3, where Isopentylgly is Isopentyl glycine, was evaluated by various spectroscopic methods, docking, and molecular dynamics simulation studies. UV-Vis and fluorescence spectroscopic titration results and CD spectra of DNA-drug showed this interaction is via groove binding. Also, thermal stability studies or DNA melting temperature changes (ΔTm), as well as the quenching emissions monitoring proved it. Also, the thermodynamic parameter and binding constant displayed that complex-DNA formation is a spontaneous process, and H-binding and also groove binding were found to be the main forces. Theoretical studies stated [Pt(NH3)2(Isopentylgly)]NO3-DNA formation occurs on C-G center on DNA, along with rising DNA-compound stability. IC50 value against the human breast cell line probably is due to the Isopentyl glycine ligand in the structure of the Pt compound, and it was obtained more than cisplatin and less than carboplatin against the MCF7 cell. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.