Abstract

In this paper, we performed thorough experimental and theoretical calculations to examine the interaction between Pt derivative, as an anticancer, and ct-DNA. The mode of DNA binding with [Pt(NH3)2(Isopentylgly)]NO3, where Isopentylgly is Isopentyl glycine, was evaluated by various spectroscopic methods, docking, and molecular dynamics simulation studies. UV-Vis and fluorescence spectroscopic titration results and CD spectra of DNA-drug showed this interaction is via groove binding. Also, thermal stability studies or DNA melting temperature changes (ΔTm), as well as the quenching emissions monitoring proved it. Also, the thermodynamic parameter and binding constant displayed that complex-DNA formation is a spontaneous process, and H-binding and also groove binding were found to be the main forces. Theoretical studies stated [Pt(NH3)2(Isopentylgly)]NO3-DNA formation occurs on C-G center on DNA, along with rising DNA-compound stability. IC50 value against the human breast cell line probably is due to the Isopentyl glycine ligand in the structure of the Pt compound, and it was obtained more than cisplatin and less than carboplatin against the MCF7 cell. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call