Abstract

The study aims to synthesize and examine the biological activity of mono- and binuclear platinum (II) and palladium (II) complexes containing terminal and bridging nitrite ligands against the test cultures of Bacillus subtilis B4647, Aspergillus brasiliensis (niger) F679, Pseudomonas aeruginosa B8243, and Escherichia coli. Through the interaction of mononuclear platinum (II) and palladium (II) complexes, dimeric complexes having nitrite ligands were synthesized. The composition and structure of these complexes were established using elemental analysis, conductometry, potentiometry, cryoscopy, infrared spectroscopy, X-ray diffraction analysis, and X-ray fluorescence analysis. A way to coordinate nitrite ligands with the central atom was established. Antimicrobial and antifungal properties were evaluated according to the capability of the synthesized complexes to inhibit the activity of bacteria and fungi via diffusion in agar and in vitro dilution. The minimum inhibitory and bactericidal concentrations of the complexes suppressing the visible growth of microorganisms and fungi, as well as exhibiting their bactericidal effect, ranged from 62.5–125 μmol/dm3. The obtained results revealed a high activity of the palladium (II) binuclear complex of the non-electrolytic type and the platinum (II) binuclear complex of the cationic type. Unlike mononuclear complexes, palladium and platinum binuclear complexes demonstrate higher antibacterial activity. Antibacterial effectiveness exhibited by the palladium complex of the non-electrolytic type against bacteria Bacillus subtilis and Escherichia coli, as well as fungi Aspergillus niger, is more pronounced. The only exception is the antimicrobial activity of the palladium complex against Pseudomonas aeruginosa, which is comparable to that of the binuclear platinum complex of the cationic type. By changing the structure of the complex, the composition and charge of the inner sphere, the number of coordination centers, as well as the nature and denticity of ligands, it is possible to achieve a higher toxic effect of the complexes against bacteria and fungi.

Highlights

  • Tures of Bacillus subtilis B4647, Aspergillus brasiliensis F679, Pseudomonas aeruginosa B8243, and Escherichia coli

  • Antimicrobial and antifungal properties were evaluated according to the capability of the synthesized complexes to inhibit the activity of bacteria and fungi via diffusion in agar and in vitro dilution

  • The obtained results revealed a high activity of the palladium (II) binuclear complex of the non-electrolytic type and the platinum (II) binuclear complex of the cationic type

Read more

Summary

Aspergillus niger

В отношении граммотрицательных бактерий Pseudomonas putida, Escherichia coli наибольшую антимикробную активность показали димерный комплекс палладия неэлектролитного типа Результаты исследования антибактериальной активности достоверно показали, что активность комплекса-неэлектролита палладия более выражена в отношении бактерий Bacillus subtilis, Escherichia coli и грибов Aspergillus niger Исключение составила Pseudomonas aeruginosa, в отношении которой активность комплекса-неэлектролита палладия сопоставима с активностью катионного биядерного комплекса платины Более высокую активность против Staphylococcus aureus, Staphylococcus saprophyticus, Escherichia coli, Proteus vulgaris, Serratia marcescens и Bacillus cereus проявил двухъядерный комплекс палладия (II) по сравнению с исходным органическим лигандом и моноядерным комплексом [PdCl2L2]. Авторами работы [13] было показано, что связывание с ДНК пиримидинового биядерного комплекса платины, содержащего нитрогруппу, происходит через частичный интеркаляционный режим. Minimum inhibitory concentration and minimum bactericidal concentration values of the palladium complexes [enPd(NO2)2Pd(NO2)2]

Микроорганизмы и грибы
СПИСОК ИСТОЧНИКОВ
INFORMATION ABOUT THE AUTHORS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call