Abstract

Dentritic Pt-based nanomaterials with enriched edge and corner atoms have recently attracted considerable attention as electrocatalysts. Meanwhile, Pt(111) facets are generally considered more active for the glycerol oxidation reaction (GOR). Thus, it is significant to construct the rational design and synthesis of dentritic Pt whose surface is mostly enclosed by {111} facets. Reported herein is a unique Pt-branched structure enriched by a large amount of valency unsaturated atoms prepared by the aggravation of the galvanic replacement strategy. The synthesis is developed to generate highly crystallized Pt nanoflowers using Te nanowires as a template. Furthermore, the electrochemical results show that Pt nanoflower is an excellent catalyst with higher mass activity and better structure stability than commercial Pt/C (20% Pt) for glycerol electro-oxidation. Besides, the template-broken approach could provide a novel potential way to synthesize Pt-based or other noble metals/alloys for their advanced functional applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.