Abstract

How to efficiently synthesize toxic chemo-drugs in the hypoxia tumor microenvironment still faces a huge challenge. Herein, we have tailored engineered vehicle-free nanoreactors by coordination-driven co-assembly of photosensitizer indocyanine green (ICG), transition metal platinum (Pt), and nontoxic 1,5-dihydroxynaphthalene (DHN) to self-amplify O2 and cascade chemo-drug synthesis in tumor cells for self-reinforcing hypoxic oncotherapy. Once vehicle-free nanoreactors are internalized into tumor cells, they show a serious instability that results in rapid disassembly and on-demand drug release under the stimuli of acidic lysosome and laser radiation. Notably, the released Pt can efficiently decompose the endogenous hydrogen peroxide (H2O2) into O2 to alleviate tumor hypoxia, which is conducive to enhancing the photodynamic therapy (PDT) efficiency of the released ICG. Complementarily, a large amount of the 1O2 generated by PDT can efficiently oxidize the released nontoxic DHN into the highly toxic chemo-drug juglone. Therefore, such vehicle-free nanoreactors can achieve intracellular on-demand cascade chemo-drug synthesis and self-reinforce photo-chemotherapeutic efficacy on the hypoxic tumor. On the whole, such a simple, flexible, efficient, and nontoxic therapeutic strategy will broaden the study of on-demand chemo-drug synthesis and hypoxic oncotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call