Abstract

Chemoimmunotherapy is an area of active research and development with a growing body of evidence supporting its potential benefits for the treatment of cancer. However, chemotherapy components of chemoimmunotherapy have several limitations, including systemic toxicity and poor performance in reversing the immunosuppressive tumor microenvironment. Here, we designed a twin drug, MROP, complexed with all-trans retinoic acid and oxaliplatin, and showed that the twin drug significantly enhanced the synergetic therapeutic efficacy with anti-PD-1 in a colorectal cancer mouse model. We demonstrated by mechanistic analyses of tumor tissue that the combination of anti-PD-1 and MROP induced immunogenic cell death and regulated tumor-infiltrating immune cells, including the polarization of tumor-associated macrophages toward type 1, a reduction in myeloid-derived suppressor cells, and a significant increase in the proportion of T cells, particularly CD8+ T cells. This paper provides a promising strategy for cancer treatment and new insight into the mechanism of chemoimmunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.