Abstract

Hydrogen peroxide (H2O2) plays a role in many facets - a household item, an important industrial chemical, a biomarker in vivo, and several others. For this reason, its measurement and quantification in a variety of media are important. While spectroscopic detection is primarily used for H2O2, electrochemical methods offer advantages in versatility, cost, and sensitivity. In this work, we investigate a 2-step surface metal nanoparticle (NP) modification for platinum (Pt) and palladium (Pd) on boron-doped diamond (BDD) electrodes for the detection of H2O2. Several parameters such as the metal salt concentration and electrodeposition charge in the 2-step modification were varied to find an optimum. Using cyclic voltammetry (CV), the BDD-PdNP electrode types were found to yield a sharper, more well-resolved H2O2 oxidation peak compared to the BDD-PtNP electrodes. Both metal NP electrode types significantly improved the response compared to the bare BDD electrode; a 150-200× improvement in sensitivity was observed across all modified electrode types. Calibration experiments were completed at both low and high concentration ranges in stagnant and flow-based solutions. The lowest limit of detection (LOD) obtained was 50 nM (5E-08 M) on a BDD-PdNP electrode modified with 1.0 mM PdCl2 to 5.0 mC in the wet chemical seeding and electrodeposition steps. 0.25 mM PdCl2 to 3.23 mC and 0.25 mM HPtCl6- to 3.23 mC also yielded a sufficient response for low-level H2O2, with LODs around 100 nM (1E-07 M). Overall, this work exemplifies the wide applicability of BDD and achieves sub-μM H2O2 LODs with a non-enzymatic electrode material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call