Abstract
The low-temperature reverse water-gas shift (RWGS) reaction faces the following obstacles: low activity and unsatisfactory selectivity. Herein, the dual-active sites of platinum (Pt) clusters and frustrated Lewis pair (FLP) on porous CeO2 nanorods (Ptcluster /PN-CeO2 ) provide an interface-independent pathway to boost high performance RWGS reaction at low temperatures. Mechanistic investigations illustrate that Pt clusters can effectively activate and dissociate H2 . The FLP sites, instead of the metal and support interfaces, not only enhance the strong adsorption and activation of CO2 , but also significantly weaken CO adsorption on FLP to facilitate CO release and suppress the CH4 formation. With the help of hydrogen spillover from Pt to PN-CeO2 , the Ptcluster /PN-CeO2 catalysts achieved a CO yield of 29.6 %, which is very close to the thermodynamic equilibrium yield of CO (29.8 %) at 350 °C. Meanwhile, the Ptcluster /PN-CeO2 catalysts delivered a large turnover frequency of 8720 h-1 . Moreover, Ptcluster /PN-CeO2 operated stably and continuously for at least 840 h. This finding provides a promising path toward optimizing the RWGS reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.