Abstract
Density functional theory based on first-principle calculations was used to examine platinum-supported oxidized graphene as a beneficial nanomaterial in terms of its catalytic activity and utility for contaminant removal and disinfecting polluted solutions in both domestic and industrial applications. The first step was to select the most appropriate available computing package to apply the supercell technique, which would provide a better representation of a large and real graphene slab. Using OpenMX was less time-consuming after we enforced a basis set for valence electrons to avoid an all-electron calculation, and this had very slight and negligible effect on the accuracy of the calculations. The OpenMX software was selected to perform forward steps of investigating changes in the properties such as adsorption energy and ground state structure of the complexes made by the adsorption of a platinum atom on the surface of pristine graphene (Pt/PG) and oxidized graphene (Pt/OG), which had the lowest adsorption energy of −5.28 eV. Moreover, we examined the effect of Pt atom adsorption on the surface and between two layers of graphene. Our results show that, there was no specific change observed in mentioned properties of Pt atom adsorption on bilayer graphene in comparison with single layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.