Abstract

Plating and stripping of lithium protrusions in lithium metal symmetric cells containing a solid block copolymer electrolyte was studied as a function of time in 3D using time-resolved X-ray tomography. These measurements enabled determination of the spatial variation in current densities at the plating and stripping electrodes. The initial interelectrode distance was 27 μm. Correlation functions were calculated to reveal the relationships between current densities at the two electrodes and local electrolyte thickness. Current densities at opposing electrode locations during protrusion growth is uncorrelated until the local interelectrode distance decreases to less than 6 μm, just before the cell shorts. Mass balance was used to determine the area from which lithium ions that form a protrusion were stripped. Computational modeling of the plating and stripping process reveals the interplay between electrochemical and mechanical driving forces and their effect on nonuniform current distribution. Model predictions were compared with experiments without resorting to any adjustable parameters. The computed correlation functions were in qualitative agreement with experiments. Finally, the model was used to calculate contour plots of electrochemical potential within the electrolyte, shedding light on how geometry, salt concentration, interelectrode distance, and mechanical stress influence local rates of electrochemical reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call