Abstract
Platelet-rich plasma is characterized by containing fundamental protein growth factors. Although many in vitro studies have documented the capability of platelet-rich plasma to induce the growth of osteoblasts or osteoblast-like cells, the effect of platelet-rich plasma on osteoclastogenesis has not yet been studied. The aim of the present study was to evaluate the effects of platelet-rich plasma and platelet-poor plasma on osteoclastogenesis with rat bone marrow cell culture. Platelet-rich plasma and platelet-poor plasma were produced from the whole blood of rat. For cell culture, rat bone marrow cells were isolated from rat tibiae and then treated with 1,25alpha dihydroxy vitamin D(3) and with different concentrations of platelet-rich plasma or platelet-poor plasma. After 4 d of culture, rat bone marrow cells were stained with tartrate-resistant acid phosphatase (TRAP), and TRAP-positive cells that had more than three nuclei (TRAP-positive multinucleated cells) were counted as osteoclast-like cells. Osteoprotegerin, known as an osteoclastogenesis-related factor, cells was quantified using an enzyme-linked immunosorbent assay (ELISA). Although platelet-poor plasma had no effect on the formation of TRAP-positive multinucleated cells, platelet-rich plasma decreased the number of TRAP-positive multinucleated cells in a dose-dependent manner. The amount of osteoprotegerin produced from rat bone marrow cells and from MC3T3-E1 cells was enhanced in platelet-rich plasma-treated groups. Under our experimental conditions, platelet-rich plasma decreased the formation of TRAP-positive multinucleated cells and increased the secretion of osteoprotegerin. This study suggests that platelet-rich plasma suppresses osteoclastogenesis, therefore inhibiting bone resorption. In addition we also demonstrated that platelet-rich plasma increased the secretion of osteoprotegerin, an inhibitor for osteoclast formation, thus suggesting that the enhancement of osteoprotegerin secretion induces this inhibitory effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.