Abstract

Natural killer (NK) cells play an important role in cancer immunosurveillance and may prevent tumor progression and metastasis due to their ability to mediate direct cellular cytotoxicity and by releasing immunoregulatory cytokines, which shape adaptive immune responses. Their reactivity is governed by various activating and inhibitory molecules expressed on target cells and reciprocal interactions with other hematopoietic cells such as dendritic cells. In mice, thrombocytopenia inhibits metastasis, and this is reversed by NK cell depletion, suggesting that platelets are an important additional player in NK cell-tumor interaction. Moreover, it has been shown that metastasizing tumor cells do not travel through the blood alone but are rapidly coated by platelets. However, the knowledge about the molecular mechanisms by which platelets influence NK cells is fragmentary at best. Here we show that platelet-derived soluble factors, secreted on coating of tumor cells or after stimulation with classic platelet agonists, impair NK cell antitumor reactivity resulting in diminished granule mobilization, cytotoxicity, and IFN-gamma production. The impaired NK cell reactivity was not due to induction of apoptosis but mediated by down-regulation of the activating immunoreceptor natural killer group 2, member D (NKG2D) on NK cells by platelet-derived transforming growth factor beta (TGF-beta). Neutralization of TGF-beta in platelet releasate not only prevented NKG2D down-regulation but also restored NK cell antitumor reactivity. Thus, our data elucidate the molecular basis of the previously described influence of platelets on NK cell antitumor reactivity and suggest that therapeutic intervention in tumor cell-platelet interaction and the resulting TGF-beta release by platelets may serve to enhance antitumor immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.