Abstract

Microvascular dysfunction and cardiomyocyte injury are hallmarks of ischemia-reperfusion injury (IRI) after heart transplantation. Platelet-derived growth factors (PDGF) have an ambiguous role in this deleterious cascade. On one hand, PDGF may exert vascular stabilizing and antiapoptotic actions through endothelial-pericyte and endothelial-cardiomyocyte crosstalk in the heart; and on the other hand, PDGF signaling mediates neointimal formation and exacerbates chronic rejection in cardiac allografts. The balance between these potentially harmful and beneficial actions determines the final outcome of cardiac allografts. We transplanted cardiac allografts from Dark Agouti rat and Balb mouse donors to fully major histocompatibility complex-mismatched Wistar Furth rat or C57 mouse recipients with a clinically relevant 2-hour cold ischemia and 1-hour warm ischemia. Ex vivo intracoronary delivery of adenovirus-mediated gene transfer of recombinant human PDGF-BB upregulated messenger RNA expression of anti-mesenchymal transition and survival factors BMP-7 and Bcl-2 and preserved capillary density in rat cardiac allografts at day 10. In mouse cardiac allografts PDGF receptor-β, but not -α intragraft messenger RNA levels were reduced and capillary protein localization was lost during IRI. The PDGF receptor tyrosine kinase inhibitor imatinib mesylate and a monoclonal antibody against PDGF receptor-α enhanced myocardial damage evidenced by serum cardiac troponin T release in the rat and mouse cardiac allografts 6 hours after reperfusion, respectively. Moreover, imatinib mesylate enhanced rat cardiac allograft vasculopathy, cardiac fibrosis, and late allograft loss at day 56. Our results suggest that PDGF-B signaling may play a role in endothelial and cardiomyocyte recovery from IRI after heart transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.