Abstract

Addition of platelet-derived growth factor (PDGF) to quiescent WI-38 human fetal lung fibroblasts mimics the effect of tumor-promoting phorbol diesters to inhibit the high-affinity binding of 125I-labeled epidermal growth factor (125I-EGF). PDGF, like phorbol diesters, was found to increase the phosphorylation state of EGF receptors immunoprecipitated from intact fibroblasts that were labeled to equilibrium with [32P]phosphate. Phosphoamino acid analysis of the EGF receptors indicated that both PDGF and phorbol diesters increased the level of [32P]phosphoserine and [32P]phosphothreonine. Phosphopeptide mapping of the EGF receptor demonstrated that PDGF increased the phosphorylation of several sites and induced the phosphorylation of a site that was not observed to be phosphorylated on EGF receptors isolated from control cells. This latter phosphorylation site on the EGF receptor was identified as threonine-654, previously shown to be phosphorylated in response to phorbol diesters in intact cells or by purified protein kinase C in vitro. Further, it was observed that PDGF mimicked the action of phorbol diesters to inhibit the EGF-dependent tyrosine phosphorylation of the EGF receptor in [32P]phosphate-labeled fibroblasts. These results are consistent with the hypothesis that increases in diacylglycerol and Ca2+ levels caused by addition of PDGF to fibroblasts activate protein kinase C and that this kinase, at least in part, mediates the effect of PDGF on the phosphorylation of the EGF receptor. The data further suggest that protein kinase C may play an important role in the regulation of cellular metabolism and proliferation by PDGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.